Blood Group Antigens and Antibodies

Vivien I Powell, MSc, FIBMS
Operations Manager
Blood Bank
April 18, 2017
Blood Group Antigens and Antibodies

• Blood Group Immunology/Pre-transfusion Testing

• ABO & Rh Blood Groups
Blood Group Antigens & Antibodies

- General review of blood group immunology
- Requirements for pre-transfusion testing
- Serologic characteristics of specific antibodies and their clinical significance
Blood Group Antigens and Antibodies

• Blood Group Immunology
 • Immunogenicity
 • Characteristics: IgM and IgG
 • Factors influencing hemagglutination

• Pre-transfusion Testing
 • ABO/Rh and antibody screen
 • Direct and indirect antiglobulin tests
 • Crossmatch
 • Automated testing
What is a blood group?

• “...inherited variations in human red cell membrane proteins, glycoproteins, and glycolipids. These variations are detected by alloantibodies, which occur either ‘naturally’...or as a result of alloimmunization...”

• G. Daniels, Human Blood Groups, 2nd ed.
Blood Group Antigens

- Markers on various red cell structures
- Detected by serologic techniques
 - Discovered when patient serum reacts with donor RBCs
Blood Group Antigens

- Antigens organized into >30 blood group systems that segregate independently
 - >350 known antigens (Ags)
 - Ags within system mark single structure and are part of gene sequence that codes for that structure
 - Genes responsible for systems mapped to locations throughout human genome
Blood Group Antigens

- Multiple alleles within each system
 - Some systems are polymorphic, e.g. Rh >56, Kell >34
 - RBCs may express many ags within single system

- Complete red cell phenotypes are highly individualized
ISBT Nomenclature

• ISBT Working Party on Terminology for Red Cell Surface Antigens
• 6 digit unique identifier
• Systems also have an alphabetical symbol
Example of Blood Group Notation

• System Kidd (JK)
• ISBT 009
 • Antigen Jka, Jkb
 • Phenotype Jk(a+b+), Jk(a+b–), Jk(a–b+)
 Jk(a–b–) null phenotype

• Gene JK
 • Allele Jka, Jkb
 Jk silent allele
 • Genotype JkaJkb, JkaJka or JkaJk
 JkbJkb or JkbJk
 JkJk null genotype
Blood Group Immunization: Determining Factors

- Immunogenic potential of antigen
 - Rh and Kell most potent
- Dose of antigen
 - amount and frequency of exposure
- Immunocompetence of recipient
 - diagnosis; 20% non-responder rate

Alloimmunization risk is 1-1.6% per RBC unit transfused
Immunogenicity

- Chemical composition/complexity
- Proteins best, then carbohydrates
- Degree of foreignness
- Size (>10K daltons better)
- Dosage/antigen density
- Route of administration (IM/IV)
Blood Group Immunization: Most Common Specificities

- Rh
- Kell
- Duffy
- Kidd
- MNSs

Antibodies that occur without exposure to RBC Ag: ABH, li, Lewis, P₁, M, N
Blood Group Antibodies

IgG

IgM
Blood Group Antibodies

IgG

• binds with Ag at 37°C
• Fc portion carries macrophage receptor
• 2 Fab sites
• monomer requires high concentration to activate complement; only to C3
 • amplifies extravascular hemolysis

IgM

• binds with Ag at ambient temperature or colder
• No macrophage receptor
• 10 Fab sites
• polymer allows complement activation to C9
 • intravascular hemolysis if reactive at 37°C
IgG Subclasses

- 4 IgG Subclasses
 - IgG1, IgG2, IgG3, IgG4
- Primary differences
 - characteristics of the hinge region
 - number of interchain disulphide bonds
- Ability to activate complement
 - IgG3 ↑ ↑ ↑
 - IgG1 ↑
Primary vs. Secondary Antibody Response

- **IgM**
- **IgG**

First contact with antigen

Second contact with same antigen

Threshold of detectability
Primary vs. Secondary Antibody Response

Primary

• Occurs over period of weeks
• Requires large antigen dose
• Produces small amount of antibody
• Produces IgM and IgG antibody
• Antibody titer drops shortly after reaching its peak

Secondary

• Occurs over period of days
• Requires small antigen dose
• Produces large amount of antibody
• Produces mostly IgG antibody
• Antibody titer is sustained
Blood Group Antibodies: Determinants of Hemolytic Potential

- Thermal amplitude
- Ability to activate complement – dependent on titer
- Immunoglobulin class and subclass
- Antibody binding force
- Antigen density
Blood Group Serology

\[\text{Ag} + \text{Ab} \xleftrightarrow[\text{k}_2]{\text{k}_1} \text{AgAb} \]
Factors Affecting Agglutination Reactions

Sensitization
- antigen/antibody concentration
- pH
- temperature
- ionic strength

Agglutination
- zeta potential
- antibody class
- antigen density
- antigen/antibody concentration
Zeta Potential

• Measurement of electrostatic repulsion between red cells
• Directly proportional to distance between red cells
• Must be reduced to support agglutination in some serological tests
 • Albumin and other additives
 • Enzyme treatment of RBCs
ABO and Rh Typing

A Ag

Anti-D

Anti-A

-D Ag
Effects of Antibody-Antigen Ratios

- Antibody Excess (Prozone)
- Equivalence (Optimum Proportions of Antigen and Antibody)
- Antigen Excess
Agglutination Testing

Positive: Red Cells Agglutinated

Negative: Red Cells Not Agglutinated
Blood Bank Routine Work-Flow

SAMPLE

Log in and centrifuge

Type

- No discrepancy
 - Assign blood type

Antibody screen

- Negative
 - Immediate spin cross-match
- Positive
 - Antibody identification
 - If clinically significant
 - Select antigen-negative blood
 - Full crossmatch

Antigen type patient’s RBCs (if not recently transfused)
Other Tests Performed

- Direct Antiglobulin Test (DAT)
- Elution studies
- Auto/allo-adsorption studies – send to Ref. Lab
- Transfusion reaction work-up
- Titers
 - Hemolytic Disease of the Fetus / Newborn
 - Cold agglutinin
 - Anti-A, Anti-B – for kidney transplants
Routine Pre-transfusion Testing

- ABO and Rh typing
- Blood group antibody detection
- Compatibility testing (crossmatch)
- Check previous admission record for typing results and antibody history

Must be repeated every three days with ongoing transfusions
1900: Landsteiner discovered polymorphisms in human blood (ABO blood groups)
H Blood Group (Precursor for ABO)

<table>
<thead>
<tr>
<th>Allele</th>
<th>Primary Product</th>
<th>Secondary Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (FUT1)</td>
<td>H-specific fucosyltransferase</td>
<td>H antigen</td>
</tr>
<tr>
<td>h</td>
<td>“silent” allele – no product</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Sugar</th>
<th>Possible Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>L-fucose</td>
<td>HH, Hh</td>
</tr>
<tr>
<td>Bombay</td>
<td>Precursor substance</td>
<td>hh</td>
</tr>
</tbody>
</table>

Blood Group Antigens and Antibodies

NYU Langone Medical Center
ABO Blood Group

<table>
<thead>
<tr>
<th>Allele</th>
<th>Primary Product</th>
<th>Secondary Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-specific glycosyltransferase</td>
<td>A antigen</td>
</tr>
<tr>
<td>B</td>
<td>B-specific glycosyltransferase</td>
<td>B antigen</td>
</tr>
<tr>
<td>O</td>
<td>“silent” allele – no product</td>
<td></td>
</tr>
</tbody>
</table>

Pheno-type

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Sugar</th>
<th>Possible Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N-acetyl-D-galactosamine</td>
<td>AA, AO</td>
</tr>
<tr>
<td>B</td>
<td>D-galactose</td>
<td>BB, BO</td>
</tr>
<tr>
<td>AB</td>
<td>both GalNac & Gal</td>
<td>AB</td>
</tr>
<tr>
<td>O</td>
<td>H substance/Ag</td>
<td>OO</td>
</tr>
</tbody>
</table>
A, B, and H Antigens

Precursor chain

H

A

B

Gal, Fuc, GalNAc, GlcNAc
ABO Typing: Forward Grouping

- Anti-A Reagent
- Anti-B Reagent
- 5% Cells

Blood Group Antigens and Antibodies
ABO Typing: Reverse Grouping

Serum

A₁ Cells
Reagent

B Cells
Reagent

A₁

B

Spin

Blood Group Antigens and Antibodies
Routine ABO Typing

Adapted from AABB Technical Manual

<table>
<thead>
<tr>
<th>Reaction of cells tested with</th>
<th>Reaction of serum tested against</th>
<th>Interpretation</th>
<th>Incidence (%) in U.S. population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-A</td>
<td>Anti-B</td>
<td>ABO Group</td>
<td>Whites</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>A</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>AB</td>
<td>4</td>
</tr>
</tbody>
</table>
ABO Typing: *Background*

- A and B Ag are not restricted to RBCs.
- Not fully developed at birth.
- Environmental Ag will provoke anti-A and/or anti-B in individuals who lack the corresponding Ag(s).
- Ab appears shortly after birth, peaks in titer at 5-10 yrs, gradually declines over time.
- Anti-A/B in cord blood is maternal IgG.
- Expected Ab may be missing in infants, elderly, or immunocompromised patients.
ABO Typing - Reagents

- Standardized reagent color
 - anti-A \textcolor{blue}{blue}\hspace{1cm} anti-B \textcolor{yellow}{yellow}
- IgM Abs allow direct agglutination

Interpretation
- forward and reverse group must confirm
- must match historical record

Reagent QC required \textit{daily}
- test for specificity
- document vendor, lot no., outdate, test results
- note appearance
ABO Typing: Clinical Importance

• ABO incompatible transfusions cause more serious clinical consequences than any other blood group.

• Every recipient (except type AB) is at potential risk for ABO incompatibility.

Note: Most errors are clerical, not technical.
Rh Typing

- Anti-D reagent + 5% RBCs
 Spin and read
- Manufacturer must adjust reagent to allow direct agglutination:
 - Rh antigen is less accessible and has fewer sites than A/B
 - Rh antibody is IgG
Rh Typing Reagents

• “Modified tube / slide test”
 • Contain additives to reduce zeta potential
 • May cause false positives; test must include Rh control

• Monoclonal blend
 • Contains both IgM and IgG components
Weak D Typing (donors)

<table>
<thead>
<tr>
<th>Anti-D IS</th>
<th>Anti-D IAT</th>
<th>Neg Control</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Rh positive</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>Rh negative</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>Rh positive</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>unresolved</td>
</tr>
</tbody>
</table>

Blood Group Antigens and Antibodies
5.14.3 Unexpected Antibodies to Red Cell Antigens

“Methods of testing shall be those that demonstrate clinically significant antibodies. They shall include incubation at 37°C preceding an antiglobulin test using reagent red cells that are not pooled.”

Standards for Blood Banks and Transfusion Services – 29th Ed
Immunization of Rabbits
Anti-human globulin
Antihuman Globulin (AHG) Reagents

- Polyclonal
 - multiple cell lines with different specificities
- Monoclonal
 - single antibody specificity
- Polyspecific
 - contains both anti-IgG and anti-complement
- Monospecific
 - contains either anti-IgG or anti-complement
Direct Antiglobulin Test (DAT)

- Detects antibody bound to RBCs \textit{in vivo}
- Diagnostic test
- Performed only when clinical evidence suggests
 - autoimmune hemolytic anemia
 - drug-induced hemolytic anemia
 - hemolytic disease of the fetus/newborn
 - hemolytic transfusion reaction
- Monospecific reagents used to specify immunoglobulin
- One-step test
Direct Antiglobulin Test (DAT)

- 5% Cells
- 3 X Wash
- Anti-globulin reagent
- Spin
Indirect Antiglobulin Test (IAT)

• Detects free antibody in serum
• Method for pretransfusion antibody detection
• AHG reagent must contain anti-IgG
• Two-step test-Ag/Ab binding occurs in vitro
• Other applications: antibody identification, crossmatch, extended antigen typing, weak D test
Indirect Antiglobulin Test (IAT)

Step 1

Serum → 5% Cells → 37°C Incubation

Blood Group Antigens and Antibodies
Indirect Antiglobulin Test (IAT)

Step 2

37°C Incubation → 3 X Wash → Anti-globulin reagent → Spin
Crossmatch Procedure - IS

1. Immediate Spin (IS) Phase

- Patient Serum
- 5% Donor Cells

Spin
2. Antiglobulin Phase

Patient serum + Donor Cells → 37°C Incubation → 3 X Wash → Spin

Anti-globulin reagent
Compatibility Testing

- Immediate spin mandatory
 - to detect ABO incompatibility
- IAT required if unexpected antibody detected in current or any previous sample
 - to detect Ag positive donor

*Electronic crossmatch

- FDA approved information system, validated to detect ABO mismatch
- two ABO typing tests of donor and recipient
Selection of Compatible Donor Blood

<table>
<thead>
<tr>
<th>Patient's ABO Type</th>
<th>Donor RBC Type</th>
<th>Donor Plasma Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O, A, B, AB</td>
</tr>
<tr>
<td>A</td>
<td>A, O</td>
<td>A, AB</td>
</tr>
<tr>
<td>B</td>
<td>B, O</td>
<td>B, AB</td>
</tr>
<tr>
<td>AB</td>
<td>AB, A, B, O</td>
<td>AB</td>
</tr>
</tbody>
</table>

Blood Group Antigens and Antibodies
Pretransfusion Record Requirements

• Transfusion order must include at least patient’s full name and unique numeric identifier
• Patient’s wristband must match information on transfusion order
• Patient sample label must be legible and include:
 • First and last name
 • Unique numeric identifier
 • Date
 • Initials of phlebotomist

Sample must be labeled at the bedside!
Pretransfusion Record Requirements

Donor unit designated for transfusion

Label or tie tag must include:

- Recipient’s first and last name
- Recipient’s unique numeric identifier
- Donor unit number
- Interpretation of compatibility test
Pretransfusion Record Requirements

Release of donor unit for transfusion

• Visual inspection of donor unit for container integrity and normal appearance

• Release records must include:
 • Recipient’s name, numeric identifier, ABO and Rh type
 • Donor unit number, ABO and Rh type
 • Interpretation of compatibility test
 • Date and time of issue
 • Names of persons issuing and accepting unit
Before transfusion at the bedside

• Review of transfusion order and positive identification of the recipient

• Verification of all information matching the blood product with the recipient item by item in the presence of the recipient

• Preferable to use two-person check process
Pretransfusion Record Requirements

Emergency issue before completion of compatibility testing

- Physician signed release indicating urgent transfusion need
- Select Group O donor unit
 - may be ABO compatible if current sample typed
 - Rh neg? only young female patients?
- Note - *release without compatibility testing* on donor unit label
Overview of BB tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO/Rh</td>
<td>Test for antigens on RBCs</td>
<td>Commercial antisera (A,B,D)</td>
<td>RBCs</td>
</tr>
<tr>
<td>DAT</td>
<td>Test for IgG/C3 on RBCs</td>
<td>Commercial AHG antisera</td>
<td>RBCs</td>
</tr>
<tr>
<td>Antibody screen/</td>
<td>Detect/identify alloantibodies</td>
<td>Commercial reagent RBCs</td>
<td>plasma</td>
</tr>
<tr>
<td>Antibody ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigen typing</td>
<td>Test for antigens on RBCs</td>
<td>Commercial antisera (anti-K, anti-Jk(^a))</td>
<td>RBCs</td>
</tr>
<tr>
<td>Crossmatch</td>
<td>Test for compatibility of donor RBC</td>
<td>Test results on patient and donor RBCs</td>
<td>Patient plasma and donor RBCs</td>
</tr>
</tbody>
</table>
Automated/Semi-automated Methods

Alternatives to Tube Testing

- MTS gel cards: acrylamide gel particles in microtubules
- Solid phase: immobilized antigens on microplate wells
Ortho ID-MTS Gel Method
Solid Phase Red Blood Cell Adherence

1. Immobilized antigen
2. Add serum
3. Incubate
4. Wash
5. Bound antibody
6. Negative
7. Positive
8. Add anti-IgG-coated indicator cells
9. Spin
Reference

• AABB Technical Manual
• Standards for Blood Banks and Transfusion Services (AABB)
Thank you!
Antibody Screening

3-cell antibody screen

<table>
<thead>
<tr>
<th>cell</th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
<th>37°C</th>
<th>AHG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Rh-hr</td>
<td>Kell</td>
<td>Kidd</td>
<td>Duffy</td>
<td>Lewis</td>
<td>MNSs</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>c</td>
<td>e</td>
<td>K</td>
<td>k</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jk³</td>
<td>Jk⁴</td>
<td>Fy³</td>
<td>Fy⁴</td>
<td>Le³</td>
<td>Le⁴</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>S</td>
<td>s</td>
<td>P1</td>
<td>IS</td>
<td>37°C</td>
<td>AHG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Auto
Screen for Serum Antibody:

<table>
<thead>
<tr>
<th>cell</th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>II</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

- **Rh-hr**: Rh, hr
- **Kell**: K, k
- **Kidd**: Jk^a, Jk^b
- **Duffy**: Fy^a, Fy^b
- **Lewis**: Le^a, Le^b
- **MNSs**: M, N, S, s
- **P**: P₁, 37°C, AHG

Example - Antibody Screen Result

Blood Group Antigens and Antibodies
Ex. Antibody Identification Panel Result

<table>
<thead>
<tr>
<th></th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
<th>IS</th>
<th>37°</th>
<th>AHG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K</td>
<td>k</td>
<td>Jk(^a)</td>
<td>Jk(^b)</td>
<td>Fy(^a)</td>
<td>Fy(^b)</td>
<td>Le(^a)</td>
<td>Le(^b)</td>
<td>M</td>
</tr>
<tr>
<td>Cell</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>c</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Auto</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Ex. Antibody Identification *Panel Result*

<table>
<thead>
<tr>
<th></th>
<th>Rh-hr</th>
<th>Kell</th>
<th>Kidd</th>
<th>Duffy</th>
<th>Lewis</th>
<th>MNSs</th>
<th>P</th>
<th>IS</th>
<th>37°</th>
<th>AHG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell</td>
<td>D</td>
<td>C</td>
<td>E</td>
<td>c</td>
<td>e</td>
<td>K</td>
<td>k</td>
<td>Jk^a</td>
<td>Jk^b</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Auto</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Divider Slide Headline