Blood Group Antigens and Antibodies
Vivien I Powell, MSc, FIBMS
Operations Manager, Blood Bank
April 18, 2017
Blood Group Antigens and Antibodies

• Blood Group Immunology/Pre-transfusion Testing

• ABO & Rh Blood Groups
Blood Group Antigens & Antibodies

• General review of blood group immunology

• Requirements for pre-transfusion testing

• Serologic characteristics of specific antibodies and their clinical significance
Blood Group Antigens and Antibodies

• Blood Group Immunology
 • Immunogenicity
 • Characteristics: IgM and IgG
 • Factors influencing hemagglutination

• Pre-transfusion Testing
 • ABO/Rh and antibody screen
 • Direct and indirect antiglobulin tests
 • Crossmatch
 • Automated testing
What is a blood group?

•“...inherited variations in human red cell membrane proteins, glycoproteins, and glycolipids. These variations are detected by alloantibodies, which occur either ‘naturally’... or as a result of alloimmunization...”

•G. Daniels, Human Blood Groups, 2nd ed.
Blood Group Antigens

- Markers on various red cell structures
- Detected by serologic techniques
 - Discovered when patient serum reacts with donor RBCs
Blood Group Antigens

- Antigens organized into 34 blood group systems that segregate independently
 - >350 known antigens (Ags)
 - Ags within system mark single structure and are part of gene sequence that codes for that structure
 - Genes responsible for systems mapped to locations throughout human genome
Blood Group Antigens

• Multiple alleles within each system
 • Some systems are polymorphic, e.g. Rh has 56, Kell has 34
 • RBCs may express many ags within single system

• Complete red cell phenotypes are highly individualized
ISBT Nomenclature

- ISBT Working Party on Terminology for Red Cell Surface Antigens
- 6 digit unique identifier
- Systems also have an alphabetical symbol
Example of Blood Group Notation

• **System** Kidd (JK)
• **ISBT** 009
• **Antigen** Jk\(^a\), Jk\(^b\)
• **Phenotype** Jk(a+b+), Jk(a+b−), Jk(a−b+), Jk(a−b−) null phenotype
• **Gene** JK
• **Allele** Jk\(^a\), Jk\(^b\)
• **silent allele** Jk silent allele
• **Genotype** Jk\(^a\)Jk\(^b\), Jk\(^a\)Jk\(^a\) or Jk\(^a\)Jk
• Jk\(^b\)Jk\(^b\) or Jk\(^b\)Jk
• JkJk null genotype
Blood Group Immunization: Determining Factors

• Immunogenic potential of antigen
 • Rh and Kell most potent

• Dose of antigen
 • amount and frequency of exposure

• Immunocompetence of recipient
 • diagnosis; 20% non-responder rate

• *Alloimmunization risk is 1-1.6% per RBC unit transfused*
Immunogenicity

- Chemical composition/complexity
- Proteins best, then carbohydrates
- Degree of foreignness
- Size (>10K daltons better)
- Dosage/antigen density
- Route of administration (IM/IV)
Blood Group Immunization: Most Common Specificities

- Rh
- Kell
- Duffy
- Kidd
- MNSs

Antibodies that occur without exposure to
RBC Ag: ABH, li, Lewis, P₁, M, N
Blood Group Antibodies

IgG

IgM
Blood Group Antibodies

IgG
- binds with Ag at 37 °C
- Fc portion carries macrophage receptor
- 2 Fab sites
- monomer requires high concentration to activate complement; only to C3
 - amplifies extravascular hemolysis

IgM
- binds with Ag at ambient temperature or colder
- No macrophage receptor
- 10 Fab sites
- polymer allows complement activation to C9
 - intravascular hemolysis if reactive at 37 °C
IgG Subclasses

• 4 IgG Subclasses
 • IgG1, IgG2, IgG3, IgG4

• Primary differences
 • characteristics of the hinge region
 • number of interchain disulphide bonds

• Ability to activate complement
 • IgG3 ↑↑↑
 • IgG1 ↑
Primary vs. Secondary Antibody Response

Antibody Level

IgG

Threshold of detectability

IgM

First contact with antigen

Second contact with same antigen
Primary vs. Secondary Antibody Response

Primary
- Occurs over period of weeks
- Requires large antigen dose
- Produces small amount of antibody
- Produces IgM and IgG antibody
- Antibody titer drops shortly after reaching its peak

Secondary
- Occurs over period of days
- Requires small antigen dose
- Produces large amount of antibody
- Produces mostly IgG antibody
- Antibody titer is sustained
Blood Group Antibodies: Determinants of Hemolytic Potential

- Thermal amplitude
- Ability to activate complement – dependent on titer
- Immunoglobulin class and subclass
- Antibody binding force
- Antigen density
Blood Group Serology

\[\text{Ag} + \text{Ab} \xrightarrow{k_1} \text{AgAb} \xrightarrow{k_2} \text{Ag} + \text{Ab} \]
Factors Affecting Agglutination Reactions

• Sensitization
 • antigen/antibody concentration
 • pH
 • temperature
 • ionic strength

• Agglutination
 • zeta potential
 • antibody class
 • antigen density
 • antigen/antibody concentration
Zeta Potential

• Measurement of electrostatic repulsion between red cells
• Directly proportional to distance between red cells
• Must be reduced to support agglutination in some serological tests
 • Albumin and other additives
 • Enzyme treatment of RBCs
ABO and Rh Typing

A Ag-

Anti-D

Anti-A

-D Ag
Effects of Antibody-Antigen Ratios

Antibody Excess (Prozone)

Equivalence (Optimum Proportions of Antigen and Antibody)

Antigen Excess
Agglutination Testing

Positive:
Red Cells Agglutinated

Negative:
Red Cells Not Agglutinated
Blood Bank Routine Work-Flow

SAMPLE

Log in and centrifuge

Type

No discrepancy

Assign blood type

Antibody screen

Negative

Immediate spin cross-match

Antigen type patient’s RBCs (if not recently transfused)

Positive

Antibody identification

If clinically significant

Select antigen-negative blood

Full crossmatch
Other Tests Performed

• Direct Antiglobulin Test (DAT)
• Elution studies
• Auto/allo-adsorption studies – send to Ref. Lab
• Transfusion reaction work-up
• Titers
 • Hemolytic Disease of the Fetus/Newborn
 • Cold agglutinin
 • Anti-A, Anti-B – for kidney transplants
Routine Pre-transfusion Testing

- ABO and Rh typing
- Blood group antibody detection
- Compatibility testing (crossmatch)
- Check previous admission record for typing results and antibody history

- *Must be repeated every three days with ongoing transfusions*
1900: Landsteiner discovered polymorphisms in human blood (ABO blood groups)
H Blood Group (Precursor for ABO)

<table>
<thead>
<tr>
<th>Allele</th>
<th>Primary Product</th>
<th>Secondary Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (FUT1)</td>
<td>H-specific fucosyltransferase</td>
<td>H antigen</td>
</tr>
<tr>
<td>h</td>
<td>“silent” allele –</td>
<td>no product</td>
</tr>
</tbody>
</table>

Phenotype

- **Common**: L-fucose
- **Bombay**: Precursor substance

Possible Genotypes

- HH, Hh (HH)
ABO Blood Group

<table>
<thead>
<tr>
<th>Allele</th>
<th>Primary Product</th>
<th>Secondary Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A-specific glycosyltransferase</td>
<td>A antigen</td>
</tr>
<tr>
<td>B</td>
<td>B-specific glycosyltransferase</td>
<td>B antigen</td>
</tr>
<tr>
<td>O</td>
<td>“silent” allele – no product</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pheno-Type</th>
<th>Immunodominant Sugar</th>
<th>Possible Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N-acetyl-D-galactosamine</td>
<td>AA, AO</td>
</tr>
<tr>
<td>B</td>
<td>D-galactose</td>
<td>BB, BO</td>
</tr>
<tr>
<td>AB</td>
<td>both GalNac & Gal</td>
<td>AB</td>
</tr>
<tr>
<td>O</td>
<td>H substance/Ag</td>
<td>OO</td>
</tr>
</tbody>
</table>
A, B, and H Antigens

Precursor chain

H

A

B

Gal, GalNAc, Fuc, GlcNAc

Gal

Fuc

GalNAc

GlcNAc
ABO Typing: Forward Grouping

Anti-A Reagent
Anti-B Reagent
5% Cells

A
B
A
B

Spin
ABO Typing: Reverse Grouping

Serum

A₁ Cells
Reagent

B Cells
Reagent

Spin

A₁ Cells
Reagent

B Cells
Reagent

A₁

B
Routine ABO Typing

<table>
<thead>
<tr>
<th>Reaction of cells tested with</th>
<th>Reaction of serum tested against</th>
<th>Interpretation</th>
<th>Incidence (%) in U.S. population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-A</td>
<td>Anti-B</td>
<td>A\textsubscript{1} Cells</td>
<td>B Cells</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
ABO Typing: *Background*

- A and B Ag are not restricted to RBCs.
- Not fully developed at birth

- Environmental Ag will provoke anti-A and/or anti-B in individuals who lack the corresponding Ag(s).

- Ab appears shortly after birth, peaks in titer at 5-10 yrs, gradually declines over time.

- Anti-A/B in cord blood is maternal IgG.

- Expected Ab may be missing in infants, elderly, or immunocompromised patients.
ABO Typing - Reagents

• Standardized reagent color
 - anti-A blue, anti-B yellow

• IgM Abs allow direct agglutination

• Interpretation
 • forward and reverse group must confirm
 • must match historical record

• Reagent QC required daily
 • test for specificity
 • document vendor, lot no., outdate, test results
 • note appearance
ABO Typing: Clinical Importance

• ABO incompatible transfusions cause more serious clinical consequences than any other blood group.
• Every recipient (except type AB) is at potential risk for ABO incompatibility.

• Note: Most errors are clerical, not technical.
Rh Typing

• Anti-D reagent + 5% RBCs
 • Spin and read
• Manufacturer must adjust reagent to allow direct agglutination:
 • Rh antigen is less accessible and has fewer sites than A/B
 • Rh antibody is IgG
Rh Typing Reagents

• “Modified tube / slide test”
 • Contain additives to reduce zeta potential
 • May cause false positives; test must include Rh control

• Monoclonal blend
 • Contains both IgM and IgG components
Weak D Typing (donors)

<table>
<thead>
<tr>
<th>Anti-D IS</th>
<th>Anti-D IAT</th>
<th>Neg Control</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>NA</td>
<td>NA</td>
<td>Rh positive</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>Rh negative</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>0</td>
<td>Rh positive</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>unresolved</td>
</tr>
</tbody>
</table>
5.13.3 Unexpected Antibodies to Red Cell Antigens

“Methods of testing shall be those that demonstrate clinically significant antibodies. They shall include incubation at 37°C preceding an antiglobulin test using reagent red cells that are not pooled.”

Standards for Blood Banks and Transfusion Services
Immunization of Rabbits
Anti-human globulin
Antihuman Globulin (AHG) Reagents

- **Polyclonal**
 - multiple cell lines with different specificities

- **Monoclonal**
 - single antibody specificity

- **Polyspecific**
 - contains both anti-IgG and anti-complement

- **Monospecific**
 - contains either anti-IgG or anti-complement
Direct Antiglobulin Test (DAT)

• Detects antibody bound to RBCs *in vivo*

• Diagnostic test

• Performed only when clinical evidence suggests
 • autoimmune hemolytic anemia
 • drug-induced hemolytic anemia
 • hemolytic disease of the newborn
 • hemolytic transfusion reaction

• Monospecific reagents used to specify immunoglobulin
• One-step test
Direct Antiglobulin Test (DAT)

- 5% Cells
- Anti-globulin reagent
- 3 X Wash
- Spin
Indirect Antiglobulin Test (IAT)

- Detects free antibody in serum
- Method for pretransfusion antibody detection
- AHG reagent must contain anti-IgG
- Two-step test - AgAb binding occurs in vitro
- Other applications: antibody identification, crossmatch, extended antigen typing, weak D test
Indirect Antiglobulin Test (IAT)

Step 1

Serum → 5% Cells → 37°C Incubation
Indirect Antiglobulin Test (IAT)

Step 2

37°C Incubation

3 X Wash

Anti-globulin reagent

Spin

NYU Langone Medical Center
Testing Additives

- **Albumin** - detects Rh antibodies
 - Binds to phospholipid layer, disrupts repulsion between cells

- **Enzymes** - differentiates specificity

- **Low ionic strength solution (LISS)**
 - Rate of Ab uptake increased
 - Reduced incubation
Testing Additives

• Polyethylene glycol (PEG)
 • Concentrates Ab by displacing diluents from cell surface
 • Also increases rate of Ab uptake when combined with LISS
AHG Testing: *Sources of Error 1*

- False negative results may be due to:
 - inadequate washing
 - failure to add AHG reagent
 - inactive AHG reagent

- Coombs Control Cells ("Check Cells") must be added to all negative tests to ensure presence of active AHG reagent
Crossmatch Procedure - IS

1. Immediate Spin (IS) Phase

Patient Serum → 5% Donor Cells → Spin
Crossmatch Procedure - IAT

2. Antiglobulin Phase

Patient serum + Donor Cells
37°C Incubation

3 X Wash

Anti-globulin reagent

Spin
Compatibility Testing

• Immediate spin mandatory
 • to detect ABO incompatibility

• IAT required if unexpected antibody detected in current or any previous sample
 • to detect Ag positive donor

• Electronic crossmatch
 • FDA approved information system, validated to detect ABO mismatch
 • two ABO typing tests of donor and recipient
Selection of Compatible Donor Blood

<table>
<thead>
<tr>
<th>Patient's ABO Type</th>
<th>Donor RBC Type</th>
<th>Donor Plasma Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O, A, B, AB</td>
</tr>
<tr>
<td>A</td>
<td>A, O</td>
<td>A, AB</td>
</tr>
<tr>
<td>B</td>
<td>B, O</td>
<td>B, AB</td>
</tr>
<tr>
<td>AB</td>
<td>AB, A, B, O</td>
<td>AB</td>
</tr>
</tbody>
</table>
Donor Confirmation Testing for RBCs

• Rh positive units: ABO only

• Rh negative units: ABO and Rh
Pretransfusion Record Requirements

• Transfusion order must include at least patient’s full name and unique numeric identifier

• Patient’s wristband must match information on transfusion order

• Patient sample label must be legible and include:
 • First and last name
 • Unique numeric identifier
 • Date
 • Initials of phlebotomist

• Sample must be labeled at the bedside!
Pretransfusion Record Requirements

• Donor unit designated for transfusion

• Label or tie tag must include:
 • Recipient’s first and last name
 • Recipient’s unique numeric identifier
 • Donor unit number
 • Interpretation of compatibility test
Pretransfusion Record Requirements

• Release of donor unit for transfusion
• Visual inspection of donor unit for container integrity and normal appearance

• Release records must include:
 • Recipient’s name, numeric identifier, ABO and Rh type
 • Donor unit number, ABO and Rh type
 • Interpretation of compatibility test
 • Date and time of issue
 • Names of persons issuing and accepting unit
Pretransfusion Record Requirements

• Emergency issue before completion of compatibility testing
• Physician signed release indicating urgent transfusion need
• Select Group O donor unit
 • may be ABO compatible if current sample typed
 • Rh neg? only young female patients?
• Note - release without compatibility testing on donor unit label
Special Transfusion Circumstances

• Emergency issue
• Massive transfusion
• Neonates
Overview of BB Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Purpose</th>
<th>Known</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO/Rh</td>
<td>Test for antigens on RBCs</td>
<td>Commercial antisera (A,B,D)</td>
<td>RBCs</td>
</tr>
<tr>
<td>DAT</td>
<td>Test for IgG/C3 on RBCs</td>
<td>Commercial AHG antisera</td>
<td>RBCs</td>
</tr>
<tr>
<td>Antibody screen/</td>
<td>Detect/identify alloantibodies</td>
<td>Commercial reagent RBCs</td>
<td>plasma</td>
</tr>
<tr>
<td>Antibody ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigen typing</td>
<td>Test for antigens on RBCs</td>
<td>Commercial antisera (anti-K, anti-Jk<sup>a</sup>)</td>
<td>RBCs</td>
</tr>
<tr>
<td>Crossmatch</td>
<td>Test for compatibility of donor RBC</td>
<td>Test results on patient and donor</td>
<td>Patient plasma and donor RBCs</td>
</tr>
</tbody>
</table>

^a K and Jk are specific blood group antigens.
Automated/Semi-automated Methods
Alternatives to Tube Testing

• MTS gel cards: acrylamide gel particles in microtubules
• Solid phase: immobilized antigens on microplate wells
Ortho ID-MTS Gel Method
Solid Phase Red Blood Cell Adherence
Automated Testing

• Gel card (Ortho Clinical Diagnostics)
 • ProVue

• Microplates (Immucor)
 • Galileo, Echo
 • Galileo-Neo

• Microplates (Bio-Rad)
 • TANGO
Reference

• AABB Technical Manual

• Standards for Blood Banks and Transfusion Services (AABB)